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Abstract

We present a functional of nonstandard growth for which the corresponding minimization problem provides a
model for image denoising, enhancement, and restoration. The diffusion resulting from the proposed model is
a combination of isotropic and anisotropic diffusion. Isotropic diffusion is used at locations with low gradient
and total variation based diffusion is used along likely edges. At all other locations, the type of anisotropy varies
according to the local image information. Experimental results illustrate the effectiveness of the model in removing
noise and retaining sharp edges while avoiding the ’staircasing effect’. Existence and uniqueness of the proposed
model are also established.

1. Introduction

Over the past 20 years, the use of variational methods and nonlinear partial differential equations (PDEs) has
significantly grown and evolved to address the image restoration problem. Here we consider image restoration as
the classical inverse problem in which a piecewise smooth image is recovered from noisy data. The challenging aspect
of this problem is to design methods which can selectively filter extraneous information, such as noise, without
losing significant features or creating false ones. Many nonlinear models have been proposed for this purpose,
however, when an image consists of objects of nonuniform intensity or has been degraded by noise, some of the
most successful noise removal techniques which retain and even enhance sharp edges often exhibit a ’staircasing
effect’. This can result in the generation of false edges which may in turn yield an incorrect segmentation. Our
goal is to study a new model for image restoration which not only removes noise and retains sharp edges, but also
avoids staircasing in what should be smooth regions.

Current PDE-based image restoration models can be classified into three types: curvature driven diffusion,
tensor driven diffusion, and variational methods. Curvature based models diffuse only along the level curves of an
image u (in particular, not at all in the direction ∇u), so edges are preserved in the denoising process. The speed
of the diffusion depends on the local curvature, and is often penalized where the magnitude of the image gradient
is large [2, 8, 13, 15, 16, 18, 19, 20, 25]. Tensor driven diffusion is governed by a matrix built into the diffusion
equation [10, 12, 28, 29]. The diffusion governed by this type of model is anisotropic and the matrix determines
the direction(s) of the diffusion as well as the speed in each direction. The main feature of this model is that the
eigenvalues of the matrix can be chosen so the model can enhance specific features such as edges or textures.

A large number of image restoration techniques are conveniently formulated using a variational approach. The
Mumford-Shah functional [17] is often used as a prototype for the free discontinuity problem. When used for image
restoration and segmentation, the main characteristic of the Mumford-Shah model is that it diffuses isotropically
while minimizing the lengths of the edges. The classic Rudin-Osher-Fatemi model [22] which minimizes the total
variation of an image yields diffusion strictly along the level curves of an image. Models based on this method
are very successful at recovering piecewise constant images with sharp edges since diffusion is only in the direction
orthogonal to ∇u [21, 22, 24, 25, 26, 27].

For images where objects are represented by non-uniform intensities, edges cannot be defined as the boundaries
of homogeneous regions. Furthermore, in highly degraded images, diffusion which is strictly in one direction may
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create false edges, the phenomenon often referred to as ’staircasing’ (see figures 2 and 3). In these cases, one may
want more flexibility in both the direction and speed of the diffusion. One solution is to diffuse isotropically away
from edges and anisotropically near likely edges. This feature does not occur in any of the three above mentioned
classes of models and although it has been explored in the literature, [9, 3, 23, 4, 5, 7], often either the interpolation
between isotropic and anisotropic diffusion is difficult to control, or the mathematical foundations are difficult to
establish.

In this paper we propose a new image reconstruction model which preserves fine structures and object boundaries
with low gradient while avoiding the ’staircasing effect’ in piecewise smooth images. This is done using anisotropic
diffusion which is between isotropic and total variation (TV) based. The type of anisotropy depends on the local
image information, thus providing a natural control of the interpolation. We use a variational approach, as it
allows us to express the model using a concise formulation which can be studied mathematically and implemented
using straightforward finite difference methods.

The paper is organized as follows. In section 2 we discuss models which combine isotropic and TV-based diffusion
and introduce the proposed model. Our numerical schemes are presented in section 3 and experimental results in
section 4. Section 5 is our concluding remarks.

2. Combining isotropic and TV-based diffusion

2.1 Background

Several models combining isotropic and TV-based diffusion have been proposed in the literature. Chambolle and
Lions [9] proposed the minimization problem

min
u∈H1(Ω)

1

2ε

∫

|∇u|<ε

|∇u|2 +

∫

|∇u|≥ε

|∇u| −
ε

2
. (1)

This model diffuses strictly perpendicular to the gradient where |∇u| ≥ ε (where edges are most likely present)
and isotropically in regions where |∇u| < ε. In images where homogeneous regions are separated by distinct edges,
(1) yields good restoration results. However, this model can be very sensitive to the threshold ε as seen in figures
1, 4 and 5.

Blomgren, Chan, Mulet, and Wong [4, 6] proposed the minimization problem

min

∫

Ω

|∇u|p(|∇u|)dx (2)

where

lims→0 p(s) = 2

lims→∞ p(s) = 1 (3)

p(s) is monotone decreasing

and Ω ⊂ R2 is the image domain. Experimental results in [4] show this model is promising for restoring piecewise
smooth images. However it is not readily evident that (2) is lower semi-continuous, making its mathematical
analysis very difficult. Furthermore, continually updating the exponent may cause oversmoothing (see figure 1) as
well as add to the computation time.

2.2 The Proposed Model

In this paper, we propose the following model which minimizes the nonstandard growth functional

min
u∈BV (Ω)∩L2(Ω)

∫

Ω

φ(x,∇u) +
λ

2
|u− I|2 (4)

where I is the observed noisy image, and

φ(x, r) :=

{
1

p(x) |r|
p(x), |r| < ε

|r| − p(x)−1
p(x) , |r| ≥ ε

, (5)
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where ε > 0 is fixed, p(x) = p(|∇Ĩ(x)|) satisfies (3), x ∈ Ω where Ω ⊂ R2 is the image domain, and Ĩ is a smoothed
version of I. The last term in (4) is a fidelity term.

The main characteristic of (4-5) is that at each different location in the image, the speed and the direction of
the diffusion depends on the local image information. At locations with sufficiently large gradient, most likely
edges, only TV-based diffusion is used. Where the gradient is close to zero, most likely homogeneous regions, the
diffusion is isotropic. At all other locations, 1 < p < 2 so the diffusion is between isotropic and TV-based. More
specifically, at these ambiguous regions the type of anisotropy varies depending on the strength of the gradient.
Therefore, in addition to switching between isotropic and anisotropic diffusion, the type of anisotropy will change
depending on the local properties of the image. This solves the problem arising from (1) where the denoising can
be too sensitive to the choice of threshold. Furthermore, this also enables the model to avoid staircasing in what
should be smooth regions.

Not only is (4-5) an effective image reconstruction model, but it is also mathematically sound. In particular, the
minimization problem (4-5) admits a unique solution (see appendix) in BV (Ω)∩L2(Ω), the set of square integrable
functions of bounded variation. Furthermore, in [11] we prove that if the initial image I ∈ BV (Ω), then there
exists a unique solution, u(x, t) ∈ BV (Ω × R+) of flow associated with (4)-(5) which converges to the solution of
(4) as t→∞.

Before further analysis of (4-5), we give a simple illustration of the effectiveness of the model. In figure 1 we
compare the proposed model with TV-based diffusion, diffusion which switches between isotropic and TV-based
(1), and diffusion in which the exponent is recomputed at each iteration (2-3). Our goal was to reconstruct an
artificial image that had been degraded by additive Gaussian noise with mean 0 (SNR=1:6). When using models
(1), (2-3), and (4-5), we illustrated the behavior of the diffusion using ’direction maps’ which display blue in regions
using only TV-based diffusion (p ≡ 1), white in regions using pure isotropic diffusion (p ≡ 2), and green where
the diffusion is a combination of both isotropic and TV-based (1 < p < 2). In the first row of figure 1, we see the
noisy image and the reconstruction and edge map using TV-based denoising only. Edges are sharply preserved,
but the reconstructed image exhibits the staircasing effect thus creating false edges. In the second and third rows,
we tested (1) with the threshold ε = 30 and 150 respectively. As the threshold grows, the model recovers smoother
regions, but finds it increasingly difficult to reconstruct sharp edges. In the fourth and fifth rows we tested the
proposed model (4-5) for the same thresholds, ε = 30 and 150. Notice that sharp edges and corners are preserved
with both, but there is little to no evidence of staircasing. Furthermore, the model does not show much sensitivity
to the threshold, ε. In the last two rows, we tested (2) for the same thresholds, ε = 30 and 150 and saw similar
results, however, there is some evidence of oversmoothing when the threshold becomes large. In this case the main
advantages of (4-5) are computation speed (see table 1), less sensitivity to the threshold, and it’s mathematical
validity.

3. Numerical Methods

Since the desired behavior (in particular, the different types of diffusion) is encoded directly into the model (4-5),
the implementation can be done using straightforward finite difference methods.

To this end, we solve the minimization problem (4) numerically using finite differences which approximate the
flow of the Euler-Lagrange equation associated with (4), specifically

∂u

∂t
− div (φr(x,Du)) + λ(u− I) = 0, in Ω× [0, T ] (6)

∂u

∂n
(x, t) = 0, on ∂Ω× [0, T ] (7)

u(0) = I, in Ω (8)

For our simulations, we chose p(x) = p(|∇Iσ(x)|) satisfying (3) to be

p(x) = 1 +
1

1 + k|∇Gσ ∗ I(x)|2
(9)

where k, σ > 0 and Gσ(x) =
1
σ
exp

(
−|x|2/4σ2

)
is the Gaussian filter.

There are two main issues to consider:
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Figure 1: First Row: noisy image, reconstruction and edge map using TV restoration only ((1) with threshold
ε = 0), iterations = 1000; Second Row: direction map, reconstruction and edge map for (1) with ε = 30, iterations
= 500; Third Row: direction map, reconstruction and edge map for (1) with ε = 150, iterations = 500; Fourth

Row: direction map, reconstruction and edge map for (4-5) with ε = 30, iterations = 500; Fifth Row: 5th Row:
direction map, reconstruction and edge map for (4-5) with ε = 150, iterations = 500; Sixth Row: direction map,
reconstruction and edge map for (2-3) with ε = 30, iterations = 500; Seventh Row: 5th Row: direction map,
reconstruction and edge map for (2-3) with ε = 150, iterations = 500; (all images: c, k = .0025, spatial resolution
= 256×256)
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1. Since the local image information determines the value of p we assume that p is constant when computing
the flow of the Euler-Lagrange equation associated with (4). This is reasonable since the model is based on
the value of p at a given location and not on the variation of p there.

2. The diffusion is degenerate. Therefore, motivated be the approximation scheme presented in [1], we approx-
imate φ(x, r) by

φβ(x, r) :=

{
1

p(x)

√
|r|2 + β2

p(x)
, |r| < ε√

|r|2 + β2 − p(x)−1
p(x) , |r| ≥ ε

, (10)

for a small parameter β > 0.
Our difference scheme is as follows. Let h represent the spatial step size and ∆t the time step size. Denote

uij = u(xi, yj) and unij = u(xi, yj , tn) where xi = ih, yj = jh and tn = n∆t. Since the diffusion term is
approximated using central differences, we use the following notation for simplicity:

∆x =
uni+1,j − u

n
i−1,j

2h
, ∆y =

uni,j+1 − u
n
i,j−1

2h

∆xx =
uni+1,j − 2unij + uni−1,j

h2

∆yy =
uni,j+1 − 2unij + uni,j−1

h2

and ∆xy =
uni+1,j+1 − u

n
i+1,j−1 − u

n
i−1,j+1 + uni,j−1

h2
.

Then taking

div ((φβ)r(x,Du))
n

ij
=





(∆2
x+∆

2
y+β

2)(∆xx+∆yy)+(p−2)(∆
2
x∆xx+2∆x∆y∆xy+∆

2
y∆yy)

(∆2
x+∆

2
y+β

2)
4−p
2

,
√

∆2x +∆2y < ε

β2(∆xx+∆yy)+∆xx∆
2
y−2∆x∆y∆xy+∆yy∆

2
x

(∆2
x+∆

2
y+β

2)
3
2

,
√

∆2x +∆2y ≥ ε
,

our scheme is simply

un+1ij = unij +∆t
(
div ((φβ)r(x,Du))

n

ij
+ λ(unij − I

n
ij))

)
.

4 Experimental Results

In the following, we have compared the results of (4-5) with comparable, mathematically valid methods, in par-
ticular, TV-based denoising and (1). We have included the reconstructions, their edge maps, and, when the type
of diffusion varies depending on the location of the image, the direction maps. The edge maps were constructed
using 1

1+c|∇Gσ∗u|2
where c > 0 is a constant and Gσ(x) = 1

σ
exp

(
−|x|2/4σ2

)
is the Gaussian filter with scale σ.

Since all of our images consistently ranged from 0 to 255 we found that a value of 0.025 < c < 0.0025 and σ = 0.5
gave the best edge map across all three models. The optimal value of c varied slightly between images, but not
between models. Furthermore, optimal results were consistently found for the proposed model (4-5) by choosing
the parameter k > 0 in the diffusion exponent, p(x) = 1+ 1

1+k|∇Gσ∗u|2
within the same range, 0.025 ≤ k ≤ 0.0025.

As mentioned in section 2, the direction map displays the type of diffusion, specifically, it displays white at locations
where the diffusion is isotropic, p(x) ≡ 2, blue in locations where the diffusion is strictly orthogonal to the gradient,
p(x) ≡ 1, and green when the diffusion is somewhere in between, 1 ≤ p(x) ≤ 2. In all of the examples, our stopping
criteria was met when the standard deviation between two consecutive iterations was less than 10−3. Finally, to
ensure stability as well as optimal results we choose β = 1, and our step sizes to be h = 1, ∆t = 0.05.

We also compared the CPU time per iteration of each of the models we tested. Model (1) was the fastest, likely
due to the fact that simple, linear diffusion is used at most locations. The proposed model (4-5) is not much slower
than TV-based denoising alone. The following chart gives an idea of the computation time involved using code
written in java and run on a laptop running Windows XP (Mobile Intel(R) Pentium(R) 4-M CPU 2.40GHz; 512
MB of RAM). The models are listed in order of speed.
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Table 1: CPU times of TV, (1), (2-3), and (4-5).
spatial res: 100×100 spatial res: 256×256

Model 200 iterations 200 iterations
(1) 1.4 s 11 s

TV only 3 s 22 s
(4-5) 4 s 27 s
(2) 6 s 45 s

Figure 2 illustrates the proposed model’s ability to reconstruct piecewise smooth regions while avoiding the
staircasing effect. The first row contains a piecewise smooth image, it’s edge map, and then the image degraded
by Gaussian noise with mean zero. The second row contains reconstructions using isotropic diffusion only (p ≡ 2),
TV-based diffusion only (p ≡ 1), and then the proposed model. In the next row we see their corresponding
edge maps. Isotropic diffusion reconstructs smooth regions, but edges are severely blurred. TV-based diffusion
reconstructs sharp edges, but the ’staircasing effect’ is clearly present. This in turn creates false edges which could
lead to an incorrect segmentation of the image. The proposed model reconstructs sharp edges as effectively as
TV-based diffusion and recovers smooth regions as effectively as pure isotropic diffusion (in particular, without
staircasing). The surface views in figure 3 give another perspective of these reconstructed images which illustrates
the above mentioned behavior.

Figure 2: Top Row: true image, edge map of the true image, image + noise; Middle Row: reconstructed image
using isotropic diffusion only (iterations = 100), reconstructed image using TV-based diffusion only (iterations
= 3000), reconstructed image using the proposed model (threshold ε = 30, iterations = 1500; Bottom Row:
corresponding edge maps (all images: c, k = 0.025, spatial resolution = 100×100)

Figure 4 shows the reconstruction of a radar image of land mines. The goal is to detect the boundaries of the
mines without picking up background noise. We compare reconstructions using the proposed model with those
using TV-based diffusion only and (1). The first column has the original image, the reconstruction using TV-based
diffusion only, and the edge map after applying TV-regularization. Notice that the land mines are sharply traced,
but false edges are created in what should be smooth regions. For the other simulations, we include the direction
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Figure 3: Another view of images in figure 2. Top Row: true image, image + noise; Middle Row: recon-
structed image using isotropic diffusion only (iterations = 100), reconstructed image using TV-based diffusion only
(iterations = 3000), reconstructed image using proposed model (threshold ε = 30, iterations = 1500, k = 0.025)

map which illustrates the type of diffusion at each location in the image (blue represents p ≡ 1, white p ≡ 2, and
green 1 < p < 2). In the second column we reconstructed the image using (1) with ε = 25. There is less background
noise, but the boundaries of the mines are no longer as sharp. In the third and fourth columns we used (4-5) with
threshold ε = 25 and 100 respectively. The boundaries of the mines are just as sharp as as TV-based reconstruction,
but the background noise is reduced, helping to avoid the problem of detecting false edges. Furthermore, although
the type of diffusion at the edges has changed (which is evident in the direction maps), the model does not display
much sensitivity to the threshold.

In figure 5, we reconstruct the ’Lena’ image which has been degraded with additive Gaussian noise. This
gives another example where the proposed model is able to reconstruct sharp edges and nonuniform regions while
avoiding staircasing. In the first row we have the original and degraded images, and can see that TV-based diffusion
alone creates false edges. The second and third rows contain the reconstructions using (1) and (4-5) respectively.
Again, the proposed model (4-5) reconstructs smooth regions and sharp edges while avoiding staircasing. On the
other hand, (1) reconstructs smooth regions, but begins to blur edges as well as lose features with low contrast
(e.g. the mouth).

In figures 6 and 7 we used the proposed model to reconstruct two different MRI images, the former with
additive Gaussian noise and the latter with noise acquired through the instrument. In both cases, the proposed
model removes noise and retains sharp object boundaries without displaying a false segmentation which could
result from staircasing. Figure 8 contains an ASTER (Advanced Spaceborne Thermal Spaceborne Emission and
Reflectance Radiometer) image of part of the Phoenix, Arizona valley; the region in the bottom right hand corner
has been burned by a wildfire. The proposed model does well delineating the boundary between the burned and
unburned regions without creating any false edges from the background textures.

5 Conclusion

In this paper we have proposed a new model for image restoration. The model uses both isotropic and anisotropic
diffusion for noise removal. The novel aspect of this model is that the type of anisotropy is determined at each
individual location in the image, depending on the local image information. This enables the model to remove
noise and retain sharp edges without exhibiting staircasing. Our experimental results show that this model is
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Figure 4: First Column: radar image of land mines, reconstructed image using TV-based diffusion only and
corresponding edge map, iterations=500; Second Column: direction map, reconstruction, and edge map using
(1), threshold ε = 25, iterations = 100; Third Column: direction map, reconstruction, and edge map using the
proposed model (4-5), threshold ε = 25, iterations=500; Fourth Column: direction map, reconstruction, and
edge map using the proposed model (4-5), threshold ε = 100, iterations = 500; (all images: c, k = 0.025, spatial
resolution = 256×256)

highly successful in recovering both piecewise smooth and degraded images.

Appendix: Existence of a solution to (4-5)

Properties of φ:

Recall that the set of functions of bounded variation is defined as

BV (Ω) := {u ∈ L1(Ω) |

∫

Ω

|Du| <∞}.

where ∫

Ω

|Du| := sup
φ∈A

{

∫

Ω

f(x)divφ(x)dx}

and
A := {φ ∈ C10 (Ω, R

n)| |φ(x)| ≤ 1, on Ω}.

Du = ∇u · Ln +Dsu is a Radon measure, where ∇u is the density of the absolutely continuous part of Du with
respect to the n-dimensional Lebesgue measure, Ln, and Dsu is the singular part (see [14]). Therefore, we can
define ∫

Ω

φ(x,Dv) :=

∫

Ω

φ(x,∇u)dx+

∫

Ω

|Dsv|
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Figure 5: First Row: true image, image + noise, reconstruction and edge map using TV restoration; Second

Row: direction map, reconstruction, and edge map using (1); Third Row: direction map, reconstruction, and
edge map using the proposed model (4-5); (all images: threshold ε = 17, iterations=500, c, k = 0.025, spatial
resolution = 256×256)

where φ is defined as in (5). Straightforward calculations give the following lemma:

Lemma 5.1 For all u ∈ BV (Ω),

∫

Ω

φ(x,Du) = sup
ψ

∫

Ω

(
−udivψ −

p(x)− 1

p(x)
|ψ|

p(x)
p(x)−1

)
dx (11)

where φ is defined using (5) and the supremum is taken over all ψ ∈ C1(Ω,Rn) with |ψ| ≤ 1.

Lemma 5.2 (lower semi-continuity) If vj , v ∈ BV (Ω) satisfy vj → v in L1(Ω) as j →∞ then

Φλ(v) ≤ Φλ(vj). (12)

where

Φλ(v) :=

∫

Ω

φ(x,Dv) +
λ

2

∫

Ω

|v − I|2dx (13)

for I ∈ BV (Ω) ∩ L2(Ω) and φ defined as in (5).

Lower semi-continuity (lemma 5.2) is a direct consequence of lemma 5.1.
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Figure 6: First Row, MRI image of a heart with Gaussian noise (SNR=1:3), reconstruction and edge map
using TV only, iterations = 2000; Second Row, direction map, reconstruction, and edge map using (4)-(5) with
threshold ε = 50, iterations = 850; Third Row, direction map, reconstruction, and edge map using (4)-(5) with
threshold ε = 150, iterations = 850; (all images: c, k = 0.0075, spatial resolution = 256×256)

The Minimization Problem

Theorem 5.3 Suppose I ∈ BV (Ω) ∩ L2(Ω) where Ω is an open bounded subset of Rn with Lipshitz boundary.
Then there exists a unique solution to the minimization problem

min{Φλ(v) : v ∈ BV (Ω) ∩ L2(Ω)}. (14)

Proof: Let {un} be a minimizing sequence of (14) in BV (Ω)∩L2(Ω). Since {un} is bounded in BV (Ω) and L2(Ω),
using the compactness of BV (Ω) and the weak compactness of L2(Ω), there exists a subsequence {unk} of {un}
and a function u ∈ BV (Ω) ∩ L2(Ω) satisfying

unk → u strongly in L1(Ω) (15)

unk ⇀ u weakly in L2(Ω). (16)

By lemma 5.2, we have that

Φλ(u) ≤ lim inf
k→∞

Φλ(unk) = inf
BV (Ω)∩L2(Ω)

Φλ(v).

Hence, u is a solution of the minimization problem. Uniqueness follows from the strict convexity of Φλ.

Existence, Uniqueness and Long Time Behavior

Theorem 5.4 Suppose u0 ∈ L
∞(Ω)∩BV (Ω) and φ is defined as in (5). Then there exists a unique weak solution

u ∈ L∞(0, T ;BV (Ω) ∩ L∞(Ω)) of (6)-(8) with u̇ ∈ L2(Ω× [0, T ]) and u(0) = u0.
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Figure 7: First Row: MRI image with noise acquired through the instrument, reconstruction and edge map using
TV restoration, iterations = 2000; Second Row Row: direction map, reconstruction, and edge map using the
proposed model (4-5), threshold ε = 30, iterations = 1000 (all images: c, k = 0.0075, spatial resolution = 208×256)

Theorem 5.5 As t → ∞, the weak solution of (6)-(8) weakly converges in BV (Ω) ∩ L2(Ω) to a minimizer u of
Φλ.

See [11] for the proofs of lemma 5.1 and theorems 5.4 and 5.5.
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